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Abstract
Ample experimental evidence shows that manual solutions

to the problem of building knowledge bases are highly
inefficient, while fully automated, machine learning based,
approaches have not yet led to practical solutions. This
makes this problem an ideal test bed for developing mixed-
initiative methods. In this paper we present such a mixed-
initiative approach where a subject matter expert teaches his
or her expertise to a learning agent. We present several
mixed-initiative methods used during the various phases of
knowledge base development, such as, cooperative problem
solving, rule learning, rule refinement and exception
handling, discussing solutions to the control and
communication issues that allow the realization of several
types of synergism between the subject matter expert and
the learning agent. We also provide experimental evidence
of the feasibility of the proposed approach.

Introduction
The development of knowledge bases is one of the big
challenges of Artificial Intelligence, the proposed solutions
covering the full spectrum of approaches, from manual
ones (where a human builds the knowledge base) to the
fully automated ones (where a knowledge base is learned
by a system).

An even more challenging version of this problem,
addressed by DARPA's and AFOSR's High Performance
Knowledge Base Program (Cohen et al., 1998), is the
development of a knowledge base directly by a subject
matter expert that has limited knowledge engineering
experience and receives limited support from a knowledge
engineer. We think that, as formulated, the solution to this
problem can only come from a mixed-initiative approach
where a subject matter expert cooperates with a learning
agent to build the knowledge base.

From an abstract point of view, solving this problem
means building a machine representation of the model of
the real world that exists only in the mind of the domain
expert. However, the domain expert is not a knowledge
engineer and cannot be expected to be able to appropriately
formalize his or her domain model. On the other hand, the
learning agent does not know what is to be formalized and
has to get this information from the expert. There are two
main issues that need to be considered in any attempted
solution: a control issue and a communication issue. The
control issue deals with the distribution of tasks between
the expert and the agent. There are some tasks that are
more difficult for the expert than for the agent, and there
are other tasks that are more difficult to be performed by
the agent.

Representative examples of tasks that are significantly
harder for the domain expert are the definition of general
problem solving knowledge (that correctly characterizes
specific examples), the verification of knowledge base
consistency and reduction of any inconsistencies, and the
reorganization of the knowledge base to improve the
problem solving efficiency of the knowledge base.

Representative examples of tasks that are significantly
harder for the learning agent are the problem of new terms,
the credit/blame assignment problem, and the definition of
the learner's representation language, background
knowledge, input examples, and bias.

Therefore, a mixed-initiative approach to knowledge
base development should be based on a control structure
where each participant does what it can do best, and
receives help from the other party.

The second issue is the communication one: how to
define a protocol to exchange information between the
expert and the agent in a form that one can easily create
and the other can easily understand? For instance, it is
clearly easier for the domain expert to understand a
sentence in agent's language than to create the sentence.
Therefore, when the agent needs some information from
the expert, rather than asking the expert to provide it, the
agent can formulate the question and possible answers and
ask the expert to indicate the correct one. Or, when the
agent cannot hypothesize the correct answer, it could ask
the expert to only provide a hint and will use this hint to
hypothesize possible answers.

For several years we have been working on developing a
mixed-initiative approach to knowledge base development.
In this approach, called Disciple, the subject matter expert
teaches the agent how to perform domain-specific tasks in a
way that resembles how the expert would teach an
apprentice, by giving the agent examples and explanations
as well as by supervising and correcting its behavior
(Tecuci, 1998). From this interaction with the expert the
agent builds and improves its knowledge base. The current
version of the Disciple approach is implemented in the
Disciple Learning Agent Shell (Disciple-LAS). The
Disciple shell and methodology are presented in (Tecuci et
al., 1999). Therefore, in this paper, we will only address the
mixed-initiative aspects of Disciple.

The central idea of the Disciple approach is to facilitate
the process of building the knowledge base through the use
of the synergism at three different levels.

At the highest level, there is the synergism between the
expert and the agent in solving a problem in cooperation.
The agent has plausible reasoning capabilities that allow it
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to distinguish between the following types of problem
solving situations:
• Situations where the agent is able to generate routine

solutions (that are known to be correct).
• Situations where the agent can only attempt innovative

solutions through the use of plausible reasoning. These
solutions may or may not be correct and have to be
checked by the domain expert.

• Situations that require creative solutions that are
beyond agent’s reasoning capabilities. These solutions
need to be provided by the domain expert.

The agent’s ability to recognize the current situation guides
the interactions with the domain expert and leads to a
cooperative problem solving process where the agent
solves the more routine parts of the problem and the expert
solves the more creative ones. In the process, the agent
learns from the expert. The problem solving situations that
were innovative for the agent become routine, and those
that were creative become first innovative and later routine
ones.

At the second level there is the synergism between
expert’s teaching of the agent and the agent’s learning from
the expert (Tecuci and Kodratoff, 1995). For instance, the
expert may select a representative example to teach the
agent how to solve a new problem (in a creative problem
solving situation), may provide explanations of the
solution, and may answer agent’s questions. The agent, on
the other hand, will learn a general problem solving rule
that would be difficult to be defined by the expert, and will
consistently integrate it into its knowledge base.

Finally, at the deepest level, there is the synergism
between the different learning methods employed by the
agent (Michalski and Tecuci, 1994). By integrating
complementary learning methods (such as inductive
learning from examples, explanation-based learning,
learning by analogy, learning by experimentation) in a
dynamic way, the Disciple agent is able to learn from the
human expert in situations in which no single strategy
learning method would be sufficient.

The Disciple-LAS mixed-initiative approach has been
applied in the HPKB program to develop the knowledge
base of a workaround agent. This agent has to determine
the best plan of actions for bypassing or reconstituting a
damage to an infrastructure, such as a damaged bridge or a
cratered road. The plan has to indicate a minimal and
expected time of completion, the resources needed, and the
transportation capacity of the reconstructed bridge or road.
We use this application to discuss the various mixed-
initiative methods of Disciple. We first describe the
structure of the knowledge base to be developed. Then we
present the mixed-initiative methods used during
cooperative problem solving, rule learning, rule refinement
and exception handling. We provide some experimental
results and we conclude the paper with a discussion of
some of the weaknesses of our approach and of future
research directions.

The Structure of the Knowledge Base
The knowledge base of Disciple-LAS consists of an
ontology and a set of problem solving rules. The ontology
defines the concepts from the application domain (Gruber,
1993). It consists of hierarchical descriptions of objects,
features and tasks, all represented as frames, according to
the OKBC knowledge model (Chaudhri et al., 1998).

The problem solving approach of the Disciple agent is
task reduction, where a task to be accomplished by the
agent is successively reduced to simpler tasks until the
initial task is reduced to a set of elementary tasks that can
be immediately performed. Therefore the problem solving
rules from the agent's knowledge base are task reduction
rules expressed in terms of the concepts from the ontology.
These rules are learned by the agent from specific examples
of task reductions provided by the domain expert and from
the explanations of these reductions.

An example of task reduction has the following form:

TR: If the task to accomplish is T1

then accomplish the tasks T11, …  , T1n

A task may be reduced to one simpler task, or to a
(partially ordered) set of tasks. An example of task
reduction is presented in Figure 1. It states that in order to
workaround the destroyed bridge at site100, one has to use
a bridge equipment of type avlb-eq and to reduce the size
of the gap.

IF the task to accomplish is
Workaround-unmined-destroyed-bridge-with-fixed-bridge

at-location site100
for-gap site103
by-unit unit91010

THEN accomplish the task
Use-fixed-bridge-with-gap-reduction-over-gap

at-location site100
for-gap site103
by-unit unit91010
with-br-eq avlb-eq

Figure 1: An example of task reduction.

An explanation is an expression of objects and features that
indicates why a task reduction is correct (or why it is
incorrect). It corresponds to the justification given by a
domain expert to a specific task reduction:

the task reduction TR is correct because E

For example, an explanation of the task reduction from
Figure 1 is the one from Figure 2. The first two explanation
pieces justify why one needs to use gap reduction. The
length of the site103 gap is 25 m and the avlb-eq allows
building a bridge of type avlb70 that can only span gaps up
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to 17 m. Therefore, the gap is too large to install avlb70
directly. However, any gap that is not longer than 26 m can
be reduced to a 17 m gap on which one can install an
avlb70 bridge. The next two explanation pieces show that
an avlb70 bridge is strong enough to sustain the vehicles of
unit91010. Indeed, the maximum load class of the wheeled
vehicles of unit91010 is 20 tones and avlb70 can sustain
vehicles with a load of up to 70 tones. Similarly, the avlb70
bridge can sustain the tracked vehicles of unit91010.

site103 with-length 25m,
avlb-eq can-build avlb70 max-gap 17m < 25m

site103 with-length 25m,
avlb-eq can-build avlb70 max-reducible-gap 26m = 25m

unit91010 max-wheeled-mlc 20t,
avlb-eq can-build avlb70 mlc-rating 70t = 20t

unit91010  max-tracked-mlc 40t,
avlb-eq  can-build avlb70  mlc-rating 70t = 40t

Figure 2: Explanation of the task reduction in Figure 1.

The rule learned from a task reduction TR and an
explanation E has the following form:

If the task to accomplish is T1g and
Eg holds ; plausible upper bound condition
Es holds ; plausible lower bound condition

then accomplish the tasks T11g, ... , T1ng

This is a partially learned IF-THEN rule that has two
conditions, a plausible upper bound (PUB) condition Eg

which, as an approximation, is more general than the exact
condition Eh, and a plausible lower bound (PLB) condition
Es which, as an approximation, is less general than Eh.
During rule refinement, the two conditions will both
converge toward the single condition Eh. We will refer to
such a rule as a plausible version space rule, or PVS rule.

In addition to the rule's condition that needs to hold in
order for the rule to be applicable, the rule may also have
several "except-when" conditions that should not hold, in
order for the rule to be applicable. An except-when
condition is a generalization of the explanation of why a
negative example of a rule does not represent a correct task
reduction. Finally, the rule may also have "except-for"
conditions (that specify negative exceptions of the rule) and
"for" conditions (that specify positive exceptions).

The plausible version space rule learned from the
example in Figure 1 and the explanation in Figure 2 is
shown in Figure 3.

Cooperative Problem Solving
The main control of the process of building the knowledge
base is provided by the Cooperative Problem Solver, as
indicated in Figure 4.

IF the task to accomplish is

Workaround-unmined-destroyed-bridge-with-fixed-bridge
at-location ?o1
for-gap ?o2
by-unit ?o3

Plausible upper bound Plausible lower bound

?o1 is bridge ?o1 is site100

?o2 is cross-section ?o2 is site103
has-length ?n4 has-length ?n4

?o3 is military-unit ?o3 is unit91010
max-tracked-mlc ?n3 max-tracked-mlc ?n3
max-wheeled-mlc ?n2 max-wheeled-mlc ?n2

?o4 is avlb-eq ?o4 is avlb-eq
can-build ?o5 can-build ?o5
max-reducible-gap ?n5 max-reducible-gap ?n5
max-gap ?n6 max-gap ?n6

?o5 is avlb70 ?o5 is avlb70
mlc-rating ?n1 mlc-rating ?n1

?n1 is-in  [0.0 150.0] ?n1 is-in [70 70]

?n2 is-in  [0.0 150.0] ?n2 is-in [25 25]
= ?n1 = ?n1

?n3 is-in  [0.0 150.0] ?n3 is-in [63 63]
= ?n1 = ?n1

?n4 is-in  [0 +infinite) ?n4 is-in [25.0 25.0]

?n5 is-in  [0.0 100.0] ?n5 is-in [26 26]
= ?n4 = ?n4

?n6 is-in  [0 1000] ?n6 is-in [17 17]
< ?n4 < ?n4

THEN accomplish the task
?t1 Use-fix-br-with-gap-reduction-over-gap

at-location ?o1
for-gap ?o2
by-unit ?o3
with-br-eq ?o4

Figure 3: An example of a task reduction rule.

The expert formulates a problem to solve (or, in agent
terminology, a task to accomplish) and Disciple tries to
reduce it by applying the task reduction rules. A plausible
version space rule is used to generate task reductions with
different degrees of plausibility, depending on which of its
conditions are satisfied. If the PLB condition is satisfied,
then the reduction is very likely to be correct. If PLB is not
satisfied, but PUB is satisfied, then the solution is
considered only plausible. The same rule could also be
applied for tasks that are considered similar to the task
reduced by it. In such a case the reductions are considered
even less plausible.

The expert has to analyze agent's solution, deciding to
accept it or to reject it. In both cases the rule refiner is
invoked to either generalize or to specialize the rule that
generated the solution. The rule refinement process is
discussed in more details in a subsequent section.
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If the agent was not able to propose any solution, then the
expert has to provide one. In this case the rule learner is
invoked to learn a new plausible version space rule. The
rule learning process is described in the next section.

From a mixed-initiative point of view, the important
aspect here is that the expert solves the credit and the
blame assignment problem, and the agent updates the rule
to correspondingly assign credit or blame to it.

The problem solver can also be invoked in an
autonomous mode. In this case it receives an initial
problem and attempts to solve it completely, through
successive reductions. If the final solution is correct, then
all the applied rules receive the corresponding credit.
However, if the expert disagrees with the final solution,
then he or she has to investigate each individual reduction
that led to the final solution, and has to identify the
reduction to blame.

The workaround agent receives as input the description
of a damage and of a military unit that has to workaround
it, and generates a workaround plan for that unit. For
instance, the input might be the destroyed bridge at site100
(see Figure 1) and unit91010 has to workaround it. The
best plan found by the workaround agent is presented in
Figure 5. It consists of installing an avlb bridge over the
river gap. It is estimated that this will take a minimum of
11h:4m:58s, the expected duration being 14h:25m:56s.
Unit91010 will need the help of unit202 that has an avlb
equipment and of unit201 that has a bulldozer. After the
bridge is installed, it will allow a traffic of 135.13
vehicles/h. The plan consists of 12 elementary actions.
Unit91010 has to obtain operational control of unit202 that
has the avlb equipment.

Workaround summary:

Initial task: Engineering action: install avlb
Workaround-damage min-duration 11h:4m:58s

for-damage damage200 expected-duration 14h:25m:56s
by-interdicted-unit unit91010 resources required: (avlb-unit202 bulldozer-unit201)

link capacity after reconstruction: 135.13 vehicles/hr
Detailed plan:
S1 Obtain-operational-control-from-corps S5 Move-unit S9 Report-emplaced-fixed-bridge

of-unit unit202 for-unit unit201 for-mil-bridge fixed-military-bridge-eq
by-unit unit91010 from-location site0 min-duration 0s
min-duration 4h:0m:0s to-location site100 expected-duration 0s
expected-duration 6h:0m:0s min-duration 1h:8m:14s time-constraints: after S8
time-constraints: none expected-duration 1h:8m:14s

time-constraints: after S4 S10 Move-equipment-over-unstabilized-mil-bridge
S2 Move-unit for-eq-set bulldozer-unit201

for-unit unit202 S6 Report-obtained-equipment for-br-design avlb70
from-location site0 for-eq-set bulldozer-unit201 min-duration 2m:0s
to-location site100 min-duration 0s expected-duration 10m:0s
min-duration 1h:8m:14s expected-duration 0s resources-required avlb-unit202
expected-duration 1h:8m:14s time-constraints: after S5 time-constraints: after S9
time-constraints: after S1

S7 Narrow-gap-by-filling-with-bank S11 Minor-bank-preparation
S3 Report-obtained-equipment for-gap site103 of-bank site105

for-eq-set avlb-unit202 for-br-design avlb70 min-duration 30m:0s
min-duration 0s min-duration 5h:19m:44s expected-duration 50m:0s
expected-duration 0s expected-duration 6h:7m:42s resources-required bulldozer-unit201
time-constraints: after S2 resources-required bulldozer-unit201 time-constraints: after S10

time-constraints: after S6
S4 Obtain-operational-control-from-corps S12 Restore-traffic-link

of-unit unit201 S8 Emplace-avlb for-unit unit91010
by-unit unit91010 for-br-design avlb70 for-link avlb70
min-duration 4h:0m:0s min-duration 5m:0s link-capacity 135.13 vehicles/h
expected-duration 6h:0m:0s expected-duration 10m:0s min-duration 0s
time-constraints: none resources-required avlb-unit202 expected-duration 0s

time-constraints: after S3, S7 time-constraints: after S11
Figure 5: A generated workaround plan.

Figure 4: Cooperative problem solving and learning.



Then this unit has to come to the site of the destroyed
bridge. Also, unit91010 has to obtain operational control of
unit201 that has a bulldozer. This unit will have to move to
the site of the destroyed bridge and then to narrow the river
gap from 25m to 17m. These actions can take place in
parallel with the actions of bringing unit202 to the bridge
site. Then the avlb bridge is emplaced, the bulldozer moves
over the bridge and clears the other side of the river to
restore the traffic. This plan was generated by successively
reducing the initial "Workaround-damage" task to simpler
subtasks.

Rule Learning
Each time the expert will provide the reduction of the
current task, the agent will attempt to learn a task reduction
rule which is a generalization of this example of problem
solving episode, as shown in Figure 6.

To learn the rule, the agent will first try to find an
explanation of why the example reduction is correct. Then
the example and the explanation are automatically
generalized to a plausible version space rule.

The expert may provide an explanation to the agent of
why the example is correct. However, we have
experimentally found that it is difficult for the expert to
manually define such explanations. The reasons are the
following ones:
• The expert would need to provide an explanation that

the agent can "understand". That is, the explanation
has to take into account the knowledge level of the
agent in the same way in which one would give a
different explanation of the same phenomenon to an
elementary school student than to a high school
student. This means that the expert would need to have
a good understanding of agent's knowledge.

Figure 6: The rule learning method.

• The expert would need to be able to express the
explanation in the language of the agent. That is, the
expert would need to know not only the syntax of the
correct sentences but also the names of the various
concepts.

Because it is more difficult for the expert to provide
explanations, we have adopted a different approach. The
agent will attempt various strategies to propose plausible
explanations from which the user will choose the correct
ones. The strategies are based on an ordered set of
heuristics for analogical reasoning which allow the agent to
propose explanations ordered by their plausibility.

For instance, to understand why a task reduction is
correct, the agent will consider the rules that reduce the

Bridge type and engineering technique used

bridge design +
minor preparation bridge design +

gap reduction
bridge design +
slope reduction

Workaround unmined destroyed bridge with fixed bridge over gap

Use fixed bridge with gap reduction over gap
Use fixed bridge with minor preparation over gap Use fixed bridge with slope reduction over gap

site103 with-length  25,
avlb-eq can-build avlb70 max-gap  17 < 25

site103 bed site106 with-length  12,
avlb-eq can-build avlb70 max-gap  17 > 12

unit91010 max-wheeled-mlc   20,
avlb-eq can-build avlb70 mlc-rating   70 ≥ 20

unit91010 max-tracked-mlc   40,
avlb-eq can-build avlb70 mlc-rating  70≥ 40

site103 bank1 site105 max-slope 190,
unit91010 default-negotiable-slope 25 <  190

site103 bank2 site105 max-slope 200,
unit91010 default-negotiable-slope 25 <  200

site203 with-length  12,
avlb-eq can-build avlb70 max-gap  17 ≥ 12

unit91010 max-wheeled-mlc   20,
avlb-eq can-build avlb70 mlc-rating   70 ≥ 20

unit91010 max-tracked-mlc   40,
avlb-eq can-build avlb70 mlc-rating  70 ≥ 40

site103 with-length  25,
avlb-eq can-build avlb70 max-gap  17 < 25

site103 with-length  25,
avlb-eq can-build avlb70 max-reducible-gap  26 ≥ 25

unit91010 max-wheeled-mlc   20,
avlb-eq can-build avlb70 mlc-rating   70 ≥ 20

unit91010 max-tracked-mlc   40,
avlb-eq can-build avlb70 mlc-rating  70 ≥ 40

Explanation:

Explanation: Explanation:

avlb70

avlb70

avlb70

site203

site103 site103

Figure 7: Generation of explanations by analogy with other reductions of the same task.
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same task into different subtasks, and will use the
explanations corresponding to these rules to propose
similar explanations for the current reduction. This
heuristic is based on the observation that the explanations
of the alternative reductions of a task tend to have similar
structures. The same factors are considered, but the
relationships between them are different. Figure 7, for
instance, shows three different reductions of the task to
workaround a damaged bridge using a fixed military
bridge. The leftmost reduction consists in installing the
fixed bridge with minor preparations, the center reduction
consists in using gap reduction, and the right most
reduction consists in using slope reduction. In a particular
situation, the decision of which of these reductions to
perform depends upon the specific relationships between
the dimensions of the bridge and the dimensions of the
river gap. Below each reduction in Figure 7 there are the
explanations corresponding to it. The similar explanations
are connected by bi-directional arrows. As one can see, if
the agent has already learned a rule corresponding to any of
these reductions, then learning the rules corresponding to
the other reductions is much simpler because the agent can
propose explanations by analogy with those of the learned
rule.

This above strategy works well when the agent has
already learned rules similar with the rule being currently
learned. In the situations when this is not true the agent has
to acquire the explanations from the expert. However, even
in such cases, the expert need not provide explanations, but
only hints that may have various degrees of detail. Let us
consider, for instance, the task reduction in Figure 1. The
expert can give the agent a very general hint, such as,
"Look for correlations between site103 (the river gap) and

avlb-eq." This is expressed by simply pointing to the
objects site103 and avlb-eq. A more specific hint would be
"Look for correlations between the length of site103 and
avlb-eq". An even more specific hint would be "Look for
correlations between the length of site103 and the lengths
of the gaps breachable with avlb-eq”.

Such hints will guide the agent in looking for
explanations that have a certain pattern, as indicated in
Figure 8. Among the plausible explanations proposed by
the agent will also be the correct explanations shown at the
bottom of Figure 8. Notice that when matching the pattern
corresponding to a hint to the explanation in the agent's
ontology, the agent uses the generalization hierarchy of the
features. For instance, "length" in the hint matches "with-
length" in the explanations because "with-length" is a
subclass of "length". Also, "gap-length" will matches both
"max-reducible-gap" and "max-gap".

The goal of this process is to allow the expert to provide
hints or incomplete explanations, which are easier to
express, rather than detailed explanations.

Once the explanation is found, the example and the
explanation are automatically generalized by Disciple into
a quite complex plausible version space rule (see Figure 3).
This generalization process takes into account the various
constraints that different pieces of knowledge should
satisfy. Let us consider the two explanations from the
bottom of Figure 8. In these explanations, avlb70 appears
as the value of the feature can-build, and has the features
max-reducible-gap and max-gap. Therefore, the
generalization of avlb70 should be a concept that is at most
as general as the intersection between the range of the
feature can-build, the domain of the feature max-reducible-
gap and the domain of the feature max-gap. It would be

An even more precise hint:
Look for correlations between the length of site103
and the lengths of the gaps breachable with avlb-eq

Hint:
Look for correlations between site103 and avlb-eq

site103

avlb-eq

A more precise hint:
Look for correlations between the length of site103
and avlb-eq

site103

avlb-eq

length
?

(≤,<,=,≠,≥ or > )
?

site103

avlb-eq

max-reducible-gap

site103

avlb-eq

with-length
25m

26m
can-build

≤

length

gap-length

?

?
(≤,<,=,≠,≥ or > )

max-gap

25m

17m
>

The explanations:

avlb70

site103

avlb-eq

with-length

can-build avlb70

Figure 8: Guiding the agent to generate explanations.
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very difficult for a domain expert to resolve these kind of
constraints, while for the agent this is very easy.

Rule Refinement
The explanation based on which a rule is learned is
generally incomplete. This may be due to the fact that
agent's knowledge is incomplete and therefore the
explanations proposed by the agent will be incomplete.
This may also be due to the fact that the explanations given
by human experts are generally incomplete, important
aspects being left out because they are assumed to be
known to the other party.

Because the explanation of the example is incomplete,
the rule learned by the Disciple agent will also be
incomplete and will need to be refined. Figure 9 represents
the basic approach to rule refinement. The agent uses its
plausible upper bound to generate an example and asks the
user to characterize it as correct or as incorrect. If the
example is accepted, then it is a positive example of the
rule and the plausible lower bound condition is
automatically generalized to cover it.

However, if the example is rejected, then it is a negative
example of the rule. In this case the agent will try to find an
explanation of why the example problem solving episode is
wrong, by applying the strategies presented in the previous
section. If an explanation is found, then the rule is
specialized with a generalization of the explanation. The
important aspect here is that the expert is helping the agent
to understand what is wrong with the negative example and
the agent uses this explanation to automatically refine the
rule, rather than having the expert or the knowledge
engineer to manually modify the rule.

Another important aspect is that a user always analyzes
specific examples, and is the agent that manipulates the rule
to make it consistent with these examples.

During rule refinement, the agent may use various
strategies to select the examples to be analyzed by the
expert. On the one hand one would like to learn a rule from
as few examples as possible, to minimize the interaction
with the expert. On the other hand, however, one would
like to generate enough examples to assure a certain degree
of verification of the learned rule.

To minimize the number of examples to be generated the
agent will explore the structure of the plausible version
space rule. For instance, an example covered by the
plausible upper bound condition and not covered by the
plausible lower bound condition will always lead to rule
refinement, whether the example turns out to be negative or
positive. On the contrary, an example that is covered by the
plausible lower bound condition will lead to a refinement
of the rule only if it turns out to be negative.

To increase the degree of verification of the rule, the
agent will explore the structure of the ontology and of the
previous examples. The idea is to cover the example space
of the rule as uniformly as possible.

Exception Handling
An important aspect of Disciple is that the ontology is
incomplete and partially incorrect and is itself evolving
during knowledge acquisition and learning. This
distinguishes Disciple from most of the other learning
agents that make the less realistic assumption that the
representation language for learning is completely defined
before any learning could take place. This may cause these
learning agents to face the "problem of new terms" (i.e., the
need to extend the representation language with new terms
when it cannot express the concept to be learned
(Dietterich et al., 1982)). Without a human expert in the
learning loop, this problem is very difficult, and has not yet
received a satisfactory solution.

In Disciple, a consequence of the incompleteness of the
ontology is that the result of rule refinement may be a
plausible version space rule with exceptions. There are
several methods that a Disciple agent can use to extend and
improve the ontology in order to reduce the number of rule
exceptions.Figure 9: The rule refinement method.

Figure 10: Exception handling methods.
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As shown in Figure 10, the agent could attempt to discover
or elicit from the expert new object features or even new
concepts that discriminate between the rule’s examples and
some or all of the rule's exceptions.

As a result of applying these methods, the rules will have
fewer (if any) exceptions and the ontology will be more
complete and more correct. As in the case of rule learning,
the agent will use analogical reasoning to hypothesize new
object features the will reduce the number of exceptions,
and will ask the user to confirm them.

Consider, for instance, the following situation: some of
the objects from the positive examples of a rule have a
certain feature F while the corresponding objects from the
other positive examples and from some of the negative
exceptions do not have this feature. It may be the case that
this feature is missing from the objects belonging to the
positive examples because these objects are incompletely
defined. Therefore, Disciple will simply ask the domain
expert specific questions such as :

• Does the object O has the feature F?
If the answer is yes, then not only is the description of
object O extended, but the rule is also refined with the
feature F, and some negative exceptions are removed.

Other types of questions that Disciple will ask the expert,
in order to remove exceptions, are:

• Which feature makes the objects O1 and O2 similar and
different from O3 ?

• Which feature distinguishes between the objects O1
and O2 ?

• Could you think of a concept that covers the objects O1
and O2 without covering the object O3 ?

While some of these questions are clearly more difficult
than others, they are all very specific. We therefore claim
that it is easier for a domain expert to answer them than it is
for a system to create natural terms that will remove the
exceptions of the rules.

As one can see, this is yet another example where the
agent analyzes the complex structure of the rules and of the
knowledge base to suggest potential fixes, and then asks
precise questions to the expert, in order to identify the
correct fixes.

Experimental Results and Claims
As mentioned before, the Disciple-LAS and methodology
have been used and evaluated within the HPKB program by
developing the workaround agent and its knowledge base.
The evaluation was performed by Alphatech and took place
over a two week period in June 1998. It consisted of two
phases, each comprising a test and a re-test. In the first
phase, the agent was tested on 20 problems that were
similar with those used for its development. Then the
solutions were provided and the developers had one week
to improve the knowledge base, which was tested again on
the same problems. In the second phase, the agent was
tested on five new problems, partially or completely out of

the scope of the agent. Then again the correct solutions
were provided, the knowledge base was improved and the
agent was tested again on the same five problems and five
new ones. Solutions were scored along five equally
weighted dimensions: (1) generation of workaround
solutions for all the viable options, (2) correctness of the
overall time estimate for each workaround solution, (3)
correctness of each solution step, (4) correctness of
temporal constraints among these steps, and (5)
appropriateness of engineering resources used. Scores were
assigned by comparing the agent's answers with those of
Alphatech's expert.

We entered the evaluation with a workaround agent the
knowledge base of which was covering only about 40% of
the workaround domain (11841 binary predicates). During
the evaluation period we continued to extend the
knowledge base to cover more of the initially specified
domain, in addition to the developments required by the
modification phase. At the end of the two weeks of
evaluation, the knowledge base of our agent grew to cover
about 80% of the domain (20324 binary predicates). This
corresponds to a rate of knowledge acquisition of
approximately 787 binary predicates/day. This result
supports the claim that the Disciple mixed-initiative
approach enables rapid acquisition of relevant problem
solving knowledge from subject matter experts.

With respect to the quality of the generated solutions,
within its scope, the Disciple agent performed at the level
of the human expert. This result supports a second claim
that the acquired problem solving knowledge is of a good
enough quality to assure a high degree of correctness of the
solutions generated by the agent.

Finally, our workaround generator had also a very good
performance, being able to generate a solution in about 0.3
seconds, on a medium power PC. This supports a third
claim that the acquired problem solving knowledge assures
a high performance of the problem solver.

Based on the evaluation results, the agent developed
with Disciple-LAS was selected to be further extended and
was integrated into a larger system that supports air
campaign planning. The integrated system was further
selected to be demonstrated at EFX'98, the Air Force's
annual show case of promising new technologies.

Conclusion and Future Research
Ample experimental evidence shows that manual solutions
to the problem of building a knowledge base are highly
inefficient and error-prone, requiring a long and intensive
joint effort by a subject matter expert and a knowledge
engineer. Also, the fully automated, machine learning
based approaches are still to demonstrate their ability to
create complex knowledge bases for real world domains.
For these reasons, this problem provides an ideal test bed
for developing mixed-initiative methods. In this paper we
have presented such a mixed-initiative approach to the
problem of building a knowledge base, and we have
provided some experimental evidence of its good qualities.
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However, there are also several weaknesses of our
approach that we plan to address in the future. For instance,
we need to develop more powerful and natural methods for
hint specification by the expert. The current types of
allowable hints do not constrain enough the search for
explanations. Moreover, some of them are not very
intuitive for the expert. Also, more powerful methods for
analogical reasoning may be developed, to enable the agent
to make more use of its background knowledge and to
provide more assistance to the expert.

We have shown various mixed-initiative methods for
cooperative problem solving, rule learning, rule refinement
and exception handling. There are, however, several other
processes in our knowledge base building methodology that
do not yet employ mixed-initiative methods. For instance,
the initial conceptual modeling of the domain is performed
by the subject matter expert and the knowledge engineer
and is not supported by the agent. We therefore plan to
develop a modeling tool that will use abstract descriptions
of tasks and objects in a scenario similar to that used in
teaching the agent.

The building of the initial ontology, including the
importing of concepts and features from previously
developed ontologies, such as CYC (Lenat, 1995), LOOM
(MacGregor, 1991) or Ontolingua (Farquhar et al, 1996), is
also a manual process, unassisted by the Disciple agent.
Because the initial conceptual modeling of the domain
identifies many necessary concepts and their relations, it is
possible to develop mixed-initiative methods that use these
concepts to explore an external ontology in order to
identify similar concepts and to point them to the user. This
would relieve the expert and the knowledge engineer from
the tedious task of manually browsing large and unfamiliar
ontologies, in search of reusable concepts.
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